Note

Assignment of ¹³C NMR signals for reduced nigerooligosaccharides prepared by partial acid hydrolysis of $(1 \rightarrow 3)$ - α -D-glucan

Atsunari Shimamura, Yoshiko Uezono, Hideaki Tsumori and Hidehiko Mukasa Department of Chemistry, National Defense Medical College, Tokorozawa, Saitama, 359 (Japan) (Received November 18th, 1991; accepted in revised form March 2nd, 1992)

Nigerooligosaccharides are nigerose and its homologous oligomers, and can be obtained by partial degradation of $(1 \rightarrow 3)$ - α -D-glucan. Major ¹³C NMR signals^{1,2} of the glucan have been assigned, as well as numerous oligo- and poly-saccharides having other linkages. However, except for nigerose³, the α - $(1 \rightarrow 3)$ -linked oligomers have not yet been studied by NMR spectroscopy.

The glucan is soluble in alkaline but not in neutral solution⁴. Most saccharides are also soluble in alkaline solution, and their alditols are alkali-stable. Therefore, ¹³C NMR spectra for the alkaline solutions of the reduced saccharides should be of wide use. As for glucitol derivatives, a few spectra of glucitol⁵⁻⁷, maltitol^{5,8}, and isomaltitol⁵ have been reported. Recently, the conformations of glucitol and maltitol were analyzed by ¹H NMR spectroscopy⁹, and the ¹³C signals of reduced isomaltooligosaccharides in 0.5 M NaOH were assigned¹⁰. We now report ¹³C NMR spectra of the reduced nigerooligosaccharides in neutral and alkaline solutions, and complete assignment of the signals.

EXPERIMENTAL

Preparation of oligosaccharide.— $(1 \rightarrow 3)$ - α -D-Glucan was synthesized from sucrose by the D-glucosyltransferase from Escherichia coli MAF10 harboring a recombinant plasmid¹¹ containing a gtfI gene of Streptococcus downei MFe28, as previously reported¹². The glucan (3.6 g) was hydrolyzed in 100 mL of 0.1 M H_2SO_4 with stirring under reflux for 2 h at 100°. The mixture was centrifuged, the glucan precipitated was further hydrolyzed four more times, and the supernatants were pooled. About 64% of the original glucan was hydrolyzed. The pooled hydrolyzate was neutralized with BaCO₃, and insoluble material was removed by

Correspondence to: Dr. A. Shimamura, Department of Chemistry, National Defense Medical College, Tokorozawa, Saitama, 359, Japan.

centrifugation. After concentration under diminished pressure, the hydrolyzate (10 mL) was applied to a column (3.6 \times 68 cm) of Bio-Gel P2 (-400 mesh) and eluted with distilled water. The fractions of dp 2-6 each were pooled and concentrated. The oligosaccharides were then reduced with NaBH₄ in distilled water, as previously reported⁴.

NMR spectroscopy.—One-dimensional ¹³C NMR spectra for 5% samples in neutral and alkaline aqueous solutions were recorded, as previously reported ¹⁰. Chemical shifts are expressed as ppm relative to an internal standard of sodium 4,4-dimethyl-4-silapentane-1-sulfonate (DSS).

Two-dimensional (2D) incredible natural abundance double quantum transfer experiment (INADEQUATE) spectra 13,14 of nigeritol and nigerotriitol (40% each) in neutral solution containing 20% $D_2\mathrm{O}$ were also measured, as previously reported 10 . The carrier frequency was 72.8 ppm for both spectra. The spectral widths for F1 and F2 were 3000 and 1500 Hz for nigeritol, and 3200 and 1600 Hz for nigerotriitol.

RESULTS

First of all 13 C signals for the reduced nigerooligosaccharides in neutral solutions were assigned (Fig. 1, Table I). In the spectrum of nigeritol (Fig. 1A), assignment of signals A', H, and Y were based on the published 13 C NMR data for $(1 \rightarrow 3)$ - α -D-glucan^{1,2} and the nonreducing terminal Glc p residue 15 . Nigeritol reduced with NaBD₄ instead of NaBH₄ gave the same spectrum except for the signal U which was shifted upfield by ~ 0.5 ppm (data not shown), allowing the assignment of the signals T and U to C-6 and C-1, respectively, of the glucitol residue (G_{OH}). The other signals were assigned by the 2D INADEQUATE spectrum (Fig. 2). All of the signals arose from G_{OH} and the nonreducing terminal Glc p residue (G_{T-GOH}) linked to G_{OH} .

The 13 C signals for nigerotriitol (Fig. 1B) were also assigned by the 2D spectrum (not shown). The signals arose from the nonreducing terminal Glcp residue (G_T) linked to the Glcp residue and the internal Glcp residue ($G_{1\text{-GOH}}$) linked to G_{OH} , and G_{OH} . These signals were observed clearly for the higher oligomers (Fig. 1C-E), where only the three signals of C-4 to C-6 of G_T were shifted; the C-4 signal (S') was shifted downfield by ~ 0.3 ppm and overlapped the signal S, and the C-5 (N) and C-6 (Y) signals were shifted upfield by ~ 0.2 ppm.

For nigerotetraitol (Fig. 1C), six new signals appeared in addition to the signals for the nigerotriitol component. The six signals, four new (B, F, R, and V) and two overlapped (L and P) signals, arose from the internal Glcp residue (G_{1-GT}) adjacent to G_T and also to the Glcp residue on the other side. The assignment of these six signals was based on that for the more internal residue, as described next.

Nigeropentaitol (Fig. 1D) gave six additional signals arising from the more internal Glcp residue (G_I), which was adjacent to other internal residues on both sides. Four signals, C, E, M, and W, were new, and the other two overlapped

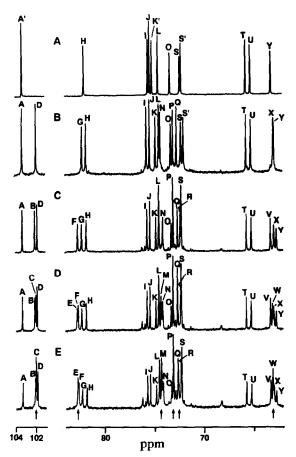


Fig. 1. 13 C NMR spectra of reduced nigerooligosaccharides of dp 2-6 (A-E) in H₂O. Signals are designated as A to Y from low to high field. Primed signals A' and K' are different in assignment from unprimed signals A and K. Signal S' entirely overlapped signal S in the higher oligomers. Arrows represent the six signals, which increased in intensity with increasing G_1 .

signals P and Q. These six signals became more intense with increasing G_I in nigerohexaitol (Fig. 1E) and become major signals in higher oligomers and polymers, as assigned in $(1 \rightarrow 3)$ - α -D-glucan^{1,2}. The signals of the internal residue, $G_{I\text{-}GT}$, in the dp 4-6 oligomers (Fig. 1C-E) were always located closely to the signals of G_I , which allowed similar assignment for $G_{I\text{-}GT}$. Thus, all of the spectra in neutral solutions were assigned (Table I). The ¹³C-chemical shifts of the higher oligomers, which consist of G_T , $G_{I\text{-}GT}$, G_I , $G_{I\text{-}GOH}$, and G_{OH} are fundamentally the same as those for nigerotetraitol.

The spectra of nigeritol (Fig. 3) and nigerotriitol (not shown) in 0–0.5 M NaOH were recorded to correlate the signals in neutral and alkaline solutions. Only the signals of C-1 and C-2 of G_{OH} shifted upfield with increasing NaOH concentration, while the other signals shifted downfield similarly. Based on these observa-

TABLE I	
Assignments of ¹³ C signals of reduced nigerooligosaccharides in H ₂ C)

Dp	Residue a		Chemical shift b (ppm)						
			C-1	C-2	C-3	C-4	C-5	C-6	
$\overline{2}$	α -D-Glc p -(1 \rightarrow 3)-	(G _{T-GOH})	103.29 (A')	74.51 (L)	75.50 (I)	72.19 (S')	75.11 (K')	63.15 (Y)	
	-glucitol	(G_{OH})	65.21 (U)	75.34 (J)	82.00 (H)	72.32 (S)	73.31 (O)	65.71 (T)	
3	α -D-Glc p -(1 \rightarrow 3)-	(G_T)	101.94 (D)	74.44 (L)	75.70 (I)	71.93 (S')	74.31 (N)	62.88 (Y)	
	$-\alpha$ -D-Glc p -(1 \rightarrow 3)-	(G_{I-GOH})	103.31 (A)	73.04 (P)	82.22 (G)	72.67 (Q)	74.79 (K)	62.93 (X)	
	-glucitol		65.19 (U)	75.37 (J)	81.81 (H)	72.23 (S)	73.26 (O)	65.69 (T)	
4	α -D-Glc p -(1 \rightarrow 3)-	(G_T)	101.85 (D)	74.49 (L)	75.68 (I)	72.26 (S)	74.10 (N)	62.67 (Y)	
	$-\alpha$ -D-Glc p -(1 \rightarrow 3)-	(G_{I-GT})	102.09 (B)	73.06 (P)	82.68 (F)	72.36 (R)	74.49 (L)	63.27 (V)	
	$-\alpha$ -D-Glc p -(1 \rightarrow 3)-	(G_{I-GOH})	103.32 (A)	73.06 (P)	82.28 (G)	72.62 (Q)	74.79 (K)	62.94 (X)	
	-glucitol		65.20 (U)	75.38 (J)	81.82 (H)	72.26 (S)	73.26 (O)	65.70 (T)	
5	α -D-Glc p -(1 \rightarrow 3)-	(G_T)	101.86 (D)	74.49 (L)	75.68 (I)	72.25 (S)	74.11 (N)	62.69 (Y)	
	$-\alpha$ -D-Glc p -(1 \rightarrow 3)-	(G_{LGT})	102.09 (B)	73.08 (P)	82.65 (F)	72.31 (R)	74.49 (L)	63.26 (V)	
	$-\alpha$ -D-Glc p - $(1 \rightarrow 3)$ -	(G_{I})	102.00 (C)	73.08 (P)	82.75 (E)	72.63 (Q)	74.28 (M)	63.06 (W)	
	$-\alpha$ -D-Glc p - $(1 \rightarrow 3)$ -	(G_{LGOH})	103.32 (A)	73.08 (P)	82.28 (G)	72.63 (Q)	74.80 (K)	62.94 (X)	
	-glucitol		65.20 (U)	75.38 (J)	81.83 (H)	72.25 (S)	73.27 (O)	65.70 (T)	

^a Abbreviation of residue in parentheses. ^b Designation of signal in parentheses.

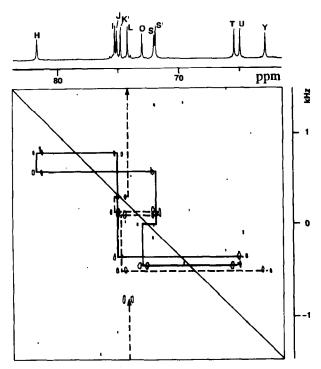


Fig. 2. 2D INADEQUATE spectrum of nigeritol from 61-84 ppm. Continuous and dashed lines indicate connectivities of 13 C satellite signals arising from G_{OH} and G_{T-GOH} , respectively. The satellite signals at -0.8 kHz for F1 and 74.5 ppm for F2 are the folding signals coupled with glucosidically linked C-1.

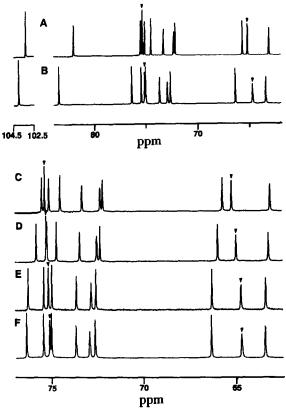


Fig. 3. ¹³C NMR spectra of nigeritol in 0 M (A and C), 0.1 M (D), 0.3 M (E), and 0.5 M (B and F) NaOH. Arrow heads represent the signals shifted upfield in the alkaline solutions.

tions and the comparison of signals arising from nigero-tetraitol to -hexaitol (not shown), the ¹³C-signals of all the oligomers in 0.5 M NaOH were also assigned (Table II).

DISCUSSION

We have prepared the reduced nigerooligosaccharides of dp 2-6 and have assigned the 13 C NMR signals in neutral and alkaline solution (Figs. 1 and 2, Tables I and II). The assignments in alkaline solution are more useful than those in D_2O alone, since most polysaccharides, including $(1 \rightarrow 3)$ - α -D-glucan, are alkali-soluble and the data can be readily compared. In this study, the signals of each residue were well resolved for the neutral solution and somewhat overlapped for the alkaline solution. Therefore, the signals were assigned first for the neutral solutions and then for the alkaline solutions.

The signals of the internal residues, G_{I-GT} , G_I , and G_{I-GOH} , were distinguished from each other, particularly in the neutral solutions. The signals of the nonreduc-

Dp	Residue a		Chemical shift (ppm)						
			C-1	C-2	C-3	C-4	C-5	C-6	
2	α -D-Glc p -(1 \rightarrow 3)-	(G _{T-GOH})	103.98	75.03	76.38	72.65	75.46	63.46	
	-glucitol	(G _{OH})	64.74	75.13	83.47	72.95	73.70	66.36	
3	α -D-Glc p -(1 \rightarrow 3)-	(G_T)	103.61	75.42	76.95	72.65	75.15	63.50	
	$-\alpha$ -D-Glc p -(1 \rightarrow 3)-	(G _{I-GOH})	103.98	73.40	85.81	73.08	75.81	63.60	
	-glucitol	(G _{OH})	64.69	75.15	83.51	72.99	73.71	66.48	
ļ	α -D-Glc p -(1 \rightarrow 3)-	(G_T)	103.32	75.42	76.86	72.84	75.01	63.50	
	$-\alpha$ -D-Glc p -(1 \rightarrow 3)-	(G_{I-GT})	103.48	73.75	85,26	72.97	75.42	63.74	
	$-\alpha$ -D-Glc p -(1 \rightarrow 3)-	(G _{I-GOH)}	103.84	73.44	85.54	73.04	78.80	63.58	
	-glucitol	(G _{OH})	64.69	75.22	83.23	72.97	73.65	66.43	
	α -D-Glc p -(1 \rightarrow 3)-	(G_T)	103.39	75.45	76.91	72.89	75.05	63.56	
	$-\alpha$ -D-Glc p - $(1 \rightarrow 3)$ -	(G_{I-GT})	103.39	73.81	85.43	72.97	75.45	63.75	
	$-\alpha$ -D-Glc p - $(1 \rightarrow 3)$ -	(G_I)	103.39	73.81	85.21	73.38	75.45	63.83	
	$-\alpha$ -D-Glc p - $(1 \rightarrow 3)$ -	(G _{I-GOH})	103.83	73.45	85.76	73.05	75.81	63.56	
	-glucitol	(G _{OH})	64.68	75.20	83.29	72.97	73.67	66.46	

TABLE II
Assignments of ¹³C signals of reduced nigerooligosaccharides in 0.5 M NaOH

ing terminal residues, $G_{T\text{-}GOH}$ and G_{T} , were also distinguishable. In dp 5 or higher oligomers, the signals arose from five types of residues, G_{T} , $G_{I\text{-}GT}$, G_{I} , $G_{I\text{-}GOH}$, and G_{OH} . Thus, the signals of these residues were definitely affected by their adjacent residues. In addition, the signals of G_{T} in α -(1 \rightarrow 3) and α -(1 \rightarrow 6)¹⁰ linkages in 0.5 M NaOH were also unambiguously distinguishable, except for the C-6 signals.

Conversion of a reducing terminal residue to the corresponding alditol residue has distinct advantages in NMR spectroscopy. First, the alditol is stable even in alkaline solution. Second the 13 C signals of the alditol increase in intensity as compared to those of its reducing forms in their α - and β -configurations, since the signals of the reducing forms are divided into two groups and each intensity is diminished. Furthermore, quantitative analysis of a terminal residue as an alditol may be possible in polysaccharides of low molecular weight, as observed in dextran T10 (data not shown).

REFERENCES

- 1 P. Colson, H.J. Jennings, and I.C.P. Smith, J. Am. Chem. Soc., 96 (1974) 8081-8087.
- 2 D. Gagnaire and M. Vignon, Makromol. Chem., 178 (1977) 2321-2333.
- 3 T. Usui, N. Yamaoka, K. Matsuda, K. Tuzimura, H. Sugiyama, and S. Seto, J. Chem. Soc., Perkin Trans. 1, (1973) 2425-2432.
- 4 A. Shimamura, Carbohydr. Res., 185 (1989) 239-248.
- 5 P. Colson, K.N. Slessor, H.J. Jennings, and I.C.P. Smith, Can. J. Chem., 53 (1975) 1030-1037.
- 6 G.W. Schnarr, D.M. Vyas, and W.A. Szarek, J. Chem. Soc., Perkin Trans. 1, (1979) 496-503.
- 7 S.J. Angyal and R.L. Fur, Carbohydr. Res., 84 (1980) 201-209.
- 8 R.E. Hoffman and D.B. Davies, Magn. Reson. Chem., 26 (1988) 425-429.

^a Abbreviation of residue in parentheses.

- 9 R.E. Hoffman, T.J. Rutherford, B. Mulloy, and D.B. Davies, *Magn. Reson. Chem.*, 28 (1990) 458-464.
- 10 A. Shimamura, H. Tsumori, and H. Mukasa, Carbohydr. Res., 220 (1991) 243-248.
- 11 R.R.B. Russell, M.L. Gilpin, H. Mukasa, and G. Dougan, J. Gen. Microbiol., 133 (1987) 935-944.
- 12 H. Mukasa, A. Shimamura, and H. Tsumori, J. Gen. Microbiol., 135 (1989) 2055-2063.
- 13 A. Bax, R. Freeman, and T.A. Frenkiel, J. Am. Chem. Soc., 103 (1981) 2102-2104.
- 14 A. Bax, R. Freeman, T.A. Frenkiel, and M.H. Levitt, J. Magn. Res., 13 (1981) 478-483.
- 15 T. Usui, M. Kobayashi, N. Yamaoka, K. Matsuda, K. Tuzimura, H. Sugiyama, and S. Seto, Tetrahedron Lett., (1973) 3397-3400.